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A nonlinear three-dimensional boundary-layer problem governing the flow upstream 
of a particular disturbance (e.g. a shallow obstacle) at the wall is considered. The up- 
stream response, a free interaction, takes place under zero displacement of the bound- 
ary layer, and the solution is found numericalIy using Fourier series truncation and 
varying the number of terms kept in the series. In  one part of the flow field regular 
separation is encountered, beyond which the motion becomes strongly attached to the 
wall elsewhere in the flow field. Analytically, local structural investigations then 
suggest that the attached part of the upstream response terminates at a line singu- 
larity, while the separated part can continue indefinitely far downstream. The former 
structure leads to a new set of similarity solutions of the three-dimensional boundary- 
layer equations, while the latter develops a vortex sheet formation. The three- 
dimensional flow problem has most relevance to pipe flows, but some connexion 
also with external flows, and the implications for these are discussed. 

1. Introduction 
Detailed understanding of separation in two-dimensional laminar flows at  high 

Reynolds numbers has advanced considerably following the breakthrough by Stew- 
artson & Williams (1969) in their study of supersonic separation. In  external %ow 
situations progress has been made with the separation phenomenon not only in super- 
sonic boundary layers (reviewed by Stewartson 1974) but also in incompressible-fluid 
or subsonic boundary layers (Sychev 1972; Messiter 1975; Smith 1977a, 1979a) and in 
jet flows (Smith & Duck 1977). Messiter (1979) has recently reviewed this progress. 
In  internal flows also, a similar degree of progress has proved possible with two- 
dimensional or axisymmetric motions (Smith 1976a, 19773, 19793). 

Detailed understanding of three-dimensional separation, on the other hand, has 
been severely limited because of the obviously much more complicated nature of the 
mechanisms involved. The three-dimensional situation is clearly the more important 
physically but, although in external flow separation from a three-dimensional body is 
believed to be generally of a quasi-two-dimensional form locally (J. H. B. Smith 1977 ; 
Smith 1978 a) ,  no satisfactory account of a genuinely three-dimensional separation has 
been advanced yet, in external or internal motions, except for the works of Sykes 
(1979) and Professor 0. R. Burggraf & Dr P. W. Duck (1978-1979 private communi- 
cations). The latter concentrate on supersonic, triple-deck (cf. Smith, Sykes & Brighton 
197 7) flow past a particular three-dimensional ramp, and the former solves numerically 
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a three-dimensional pipe-flow problem (of Smith 1976b) which involves zero displace- 
ment of the boundary layer (as described below). 

Our concern is also with the Smith (19763) pipe-flow problem (see aIso comments at  
the end of $ 1) but our standpoint and aims are rather different from those of Sykes’ 
(1  979) complementary study. He investigates the effects of particular three-dimen- 
sional obstacles, of length (streamwise) O(a*) and height (normally) O(a*R-%), in a 
boundary layer, where a* is the radius of the pipe, R( > 1) is the Reynolds number (see 
below) and h is an O( 1)  parameter (0 < h < 00). For such obstacles upstream influence 
is generated on an @a*) length scale according to Smith (19763) (who considered 
solutions for h < l),  and Sykes (1979) obtains solutions effectively for a number of 
values of h. Our interest, however, centres on the upper limit of the problem of Smith 
(19763) and Sykes (1979), in the sense that h is supposed to be large (but not so large 
that the asymptotic structure of Smith 1976b is disturbed: strictly, 1 < h 4 Rq for 
all q > 0). In  that case the upstream response can be expected to be pushed as far 
upstream as possible and, after a nonlinear development, the upstream response must 
terminate (at the onset of the obstacle) with relatively large velocities and pressures 
in order to be able to negotiate the relatively large obstacle. Similar arguments have 
been applied in two-dimensional flows by Stewartson & Williams (1969, 1973), Smith 
& Stewartson (1973a,b), Smith ( 1 9 7 7 ~ ) .  The major question then is: how does the 
upstream response terminate ? 

The answer to the question above should in particular enable a description of the 
flow past obstacles much steeper than those (of slope R-4) above to be put forward and 
so allow inroads to be made into the more realistic problems of flow past more severe 
three-dimensional obstacles. However, the question does necessitate a numerical 
study of the entire three-dimensional free interaction stemming from Smith’s (19763) 
linearized treatment, followed by an analysis of the terminal structure of the upstream 
response, and that, essentially, is the aim of the present work. Fortunately the entire 
upstream response can be obtained by integrating the free interaction forward (at 
least, until separation is encountered: see $9 2 and 3 below) without change of bound- 
ary conditions. Nevertheless, severe numerical difficulties do arise in treating the 
three-dimensional boundary-layer problem in a satisfactory manner, as Sykes (1  979) 
points out. Our treatment, involving Fourier series truncation and a gradual increasing 
of the number of terms kept in the series, is described in $ 2 and 3. The solutions for the 
upstream boundary layer are also presented in $ 3. They show three-dimensional 
separation (which is encountered here in a regular fashion; cf. Goldstein 1948) setting 
in at one part of the flow field, followed by a strong attachment phenomenon at  another 
part of the flowfield. Then 9 4 considers the ultimate form of the upstream response. It is 
predicted that the attached part terminates along a line singularity and the terminal 
form there leads to a new set of similarity solutions of the three-dimensional boundary- 
layer equations (54.1). In  contrast, the separated part can extend infinitely far 
downstream in principle and it acquires a vortex-sheet formation there ($4.2). The 
analysis of $54.1, 4.2 is compared with the full numerical solutions of $ 3  in $4.3.  
Finally, $ 5 provides some interpretation and discussion of the results and analysis. 

The three-dimensional boundary-layer problem tackled below is of most relevance 
in pipe flows (Smith 19763) then, in which context we introduce the flow vari- 
ables. The cylindrical polar co-ordinates (x, T ,  e), corresponding velocities (u, v, w) 
and the pressure p are used, where the lengths, velocities and pressure have 
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-0(1) - 
pipe flow studied in this paper, assuming an obstacle of slope 

FIGURE 1. The geometry and the co-ordinates for the upstream response of the three-dimensional 
R-* downstream. 

been non-dimensionalized with respect to a*, lJ2 and p U Z 2  respectively, U z  is a 
characteristic speed of the pipe flow far upstream and p is the fluid density (see 
figure 1). The flow far upstream is taken to be Poiseuille flow, although it should be 
possible later to treat more general oncoming forms also. The Reynolds number is 
R = U z  a*v--lB 1, where v is the kinematic viscosity of the fluid, and the fluid is 
assumed to be incompressible and its motion to be laminar and steady. The upstream 
response then occurs with x ,  6 of O(1) (0  6 0 < 2n), (figure 1) and the oncoming 
Poiseuille motion holding for x +  - m is taken to have the form 

U = &(1-T2), v = w = 0, 1, N - 2 x / R .  (1.1) 

However, since only the boundary layer induced (with zero displacement) near the 
pipe wall needs to be examined here, the problem of this paper also has some connex- 
ions with certain external flow situations, as Sykes (1979) notes. For example, the 
triple-deck external flow problem of Smith et al. (1977) reduces to our one with zero 
displacement if the length scales of their obstacles are reduced significantly (in much 
the same manner as that described by Smith 1973 in planar motions). Only the 
periodicity of our flow problem with respect to 0 tends to limit its applicability to 
many external situations, therefore. 

2. The flow structure, governing equations and numerical scheme 

O(R-+). In  I, 
The flow structure is set up predominantly in the boundary layer (I) of thickness 

(u, V, ~ , p )  = [R-+u(x, Y ,  e), - R - Q v ( x ,  Y ,  e), R-+ w ( ~ ,  Y ,  e), R-*P(x, e)]  (2 .1)  

to leading order and r = 1 - R-+Y, where Y is O(1). The governing equations are 
therefore those expressing continuity, x momentum and 8 momentum: 

au av aw -+-+-= 0, 
ax ay ae 

au au au ap a2u u-+ v-+w- = -- +- ax ay  ae ax aya' 

aw aw aw ap aaw 
ax ay ae u-+'v-+w-=-- ae +- aY2' 

( 2 . 2 4  

(2 .2b)  

( 2 . 2 4  
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while the r-momentum equation is satisfied to leading order since aP/aY = 0. The 
boundary conditions on (2.2u-c) are 

U = V =  W = O  a t  Y = O ,  ( 2 . 3 ~ )  

U + Y ,  V+O, W j - 0 ,  P-tO as x+--00, (2.3b) 

U - Y + o ( l )  as Y-+oo, ( 2 . 3 ~ )  

periodicity in 8. p a )  
Here ( 2 . 3 ~ )  is the no-slip condition, (2.3b) matches the flow to the Poiseuille shear far 
upstream, and ( 2 . 3 ~ )  is a zero displacement condition necessary to match I with the 
flow in the core (11, wherein 0 < r < 1). For, if the displacement from the boundary 
layer were non-zero ( U  - Y ++ 0 as Y -+ a), then in the core the pressure would have to 
be O(R-*) and would satisfy a linear equation with homogeneous boundary conditions. 
We propose (as in Smith 19763) that in general there is no non-trivial solution for such 
a core pressure, which proposition leads us to the constraint ( 2 . 3 ~ ) .  In fact, in I1 the 
perturbations of (1.1) are only O(R-8) and the solution has the form 

(u, v, W,P) = (+(I - r2), o,o, 0) + Rf(u,, v1, W1,Pl). (2.4a) 

Here ul, v,, wl,pl satisfy the linearized inviscid equations of motion and the boundary 
conditions 

pl+p(x,e), u, O((I - r ) - l ) ,  v1 0(1), w, 0((1 -r)-1) (2.4b) 

as r -+ 1 - , to merge with (2.1). The core flow therefore has but a passive role in the flow 
structure and can be determined only after the boundary-layer flow in I has been 
found. The existence of solutions for ul, v,, wl,pl sartisfying (2.4b) is discussed by Smith 
(1976b). Finally, the condition (2.3d) of periodicity will be made specific below. 

The problem (2.2u-c) to (2.3u-d) is a closed and parabolic one (at least, until any 
flow reversal is encountered: see 0 3 below), and is the main concern of this paper. The 
boundary layer starts its deviation from the incoming Poiseuille form (U  = Y, 
V = W = P = 0) far upstream, for x-+ -a, where 

U = Y - b, L?( Y) ez cos (0 - 8,) + O(eZz), 

V = O(e&), 

P = b ,excos (8 -8 , )+O(e22) ,  

W = b, 9( Y )  ez sin (8 - 8,) + O(e&) 

(Smith 1976b), 8, is an arbitrary constant and 9( Y) satisfies 

Y- Y 9  = - 1)  P ( 0 )  = 9 ( w )  = 0. 

The constant b, in (2.5) is unknown: it is determined, along with all the arbitrary con- 
stants b, which arise in the successive O(enz) terms implied in (2 .5 ) ,  by the particular 
downstream mechanism provoking the boundary-layer flow (as in the three-dimen- 
sional work of Sykes (1979) and Smith (19763); cf. the two-dimensional triple-deck 
studies of Stewartson (1970)) Smith & Stewartson (1973u, b),  Smith (1974), Rizzetta, 
Burggraf & Jenson (1978), where only one arbitrary constant arises). Here we consider 
the inverse problem in which the constants b,, b,, . . . are specified and the solution to 
(2.2u-c), (2.3u-d) is allowed to develop, nonlinearly, from its initial deviation (2 .5) .  
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The necessarily numerical investigation of this development will now be described; 
discussion of its physical significance is deferred until 0 5. 

First we observe that, from the properties of (2.2a-c) for Y 9 1,  ( 2 . 3 ~ )  implies the 
algebraic behaviour 

where 

V N E(x, 0 )  + F(x, 6) Y-l+ O( Y-2) ,  when Y 9 1, ( 2 . 6 ~ )  i u Y + c(x, e)  Y - I +  o( Y - 2 ) ,  

w - D ( ~ ,  e)  Y-1 + o ( Y - ~ ) ,  

(2.6b) 

and the functions C(x, O ) ,  D(x, O ) ,  E(x,  O ) ,  P(x, 8 )  are to be determined. Next, we make 
the periodicity condition (2.3d) specific by concentrating on a motion which is sym- 
metric about the plane 0 = 0,n (figure 1) .  Although some loss of generality is involved, 
this symmetry enables the numerical task to be made lighter while preserving the 
essential three-dimensional (non-axisymmetric) nature of the problem. Thus (2.3 d )  
becomes 

W = o  a t  B = O , n  (2.7) 

and 0, = 0 in (2.5). The two conditions in (2.7) can be applied, despite the single 0- 
derivatives in (2.2a-c), because of the unknown streamwise growth rate of the solution. 

Initially we tried complete central differencing of the problem (2.2a-c), (2.3a, b) ,  
(2.6a, b), (2.7), that being perhaps the most direct and usually reliable method of 
numerical solution, However, it was found that such a treatment could not cope 
adequately enough with the three-dimensional variation of the motion, especially the 
&variation. Therefore we turned to a series truncation technique, an extension of 
those successfully employed by Dennis & Chang (1970), among others, in two-dimen- 
sional numerical work. A solution to (2.2ccc), (2.3a, b ) ,  (2.6a, b )  and (2.7) is sought in 
the Fourier series form 

m 

(u, J‘, w , P )  = C eine[fn(x, Y ) , g n ( x ,  Y ) ,  -ihn(x, Y)s~n(x) I  (fn,gn,hn,Pnreal), 
( 2 . 8 ~ )  

where, from (2.7), 
f-n E fnj 9-n gn, h-n -hn ,  P-n 3 pn (2.8b) 

if n > 0, and h, E 0; thus the 0 dependence and the conditions (2.7) are dealt with by 
the trigonometric functions implied in (2.8a, b ) .  Substitution of (2.8a, b )  into the 
governing equations (2.2a-c) and equating coefficients of equal powers ofeie leads to an 
infinite-ordered set of coupled partial differential equations in x, Y only. For compu- 
tational purposes the infinite set was then truncated (at M ,  say) by considering only 
the first (4M+3)  distinct equations of the set, for fj,gj,hj,pj with 0 < j < M but 
ho = 0. The truncated set of equations for 1 < n < M is: 

n = - m  

( 2 . 9 ~ )  

(2.9b) 
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Thus the (mean flow) terms fo, go, po are governed by the uncoupled but nonlinear 
equations (2.9a,b), whereas the remaining terms f,,g,,hn,pn for 1 < n < M which 
dictate the 8 variation (from (2.7)) are governed by a coupled but linear set (2.1Oa-c). 
The boundary conditions on fo, go,po are 

(2.11) y+*71 f o  N Y + O( Y-a), go+ -dpo/dx as 

f o  = go = 0 at Y = 0, 
fo+Y,  go+O, po+O as x-+-co, 

from (2.3a, b) ,  (2.6a, b) .  Those on f,, g,, h,, pn for 1 < n < M are, similarly, 

afn -++ha ax N O(Y-2), -,-- ah ax v n  Y o(y-2) as ~ + c o j  

fn = g, = h, = 0 at 
(2.12) Y = 0, 

f n + O ,  gn+O,  h,+O, pn+O as x + - m  ) 
The numerical procedure adopted for (2.9)-(2.12) was fairly straightforward in 

principle but involved many cumbersome matrix manipulations and so here we will 
describe only the basic essentials of the procedure. The equations (2.9)-(2.10) were 
discretized using two- and three-point central differences and averages (see below), 
while the outer conditions (for Y+co) in (2.11) and (2.12) were generally replaced by 
corresponding one-point and two-point difference constraints respectively, a t  a 
suitably large value (Ym) of Y ,  with the contributions marked O( Y-2) being neglected. 
Thus, with mesh widths of Ax in x, A Y in Y ,  at a particular calculation point 

(x + &Ax, y k  

for the momentum equations (2.9b), (2 .10b ,c)  the terms dpn/dx, np,, ayn/i3Yz, 
fj afn,/i3x, gi af,,/a Y ,  h,,, f’, for example, were replaced by the centred differences or 
averages 

p ,  - p ,  n(p,  + pn) f i k + l )  - 2fik) +fAk-’) +fhk+l) - 2f(k) n n  +f(k--l) 

Ax ’ 2 ’  2(A Y ) 2  7 
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respectively, for K - 1 2 k 2 1, where Y, = (K  - 1) A Y. Here fAk), f k k )  denote in turn 
the known and unknown values, a t  the (k - 1)th mesh point Y = Yk = (k - 1) A Y from 
the surface Y = 0, of the function f, a t  the two successive stations x, x+Ax, and 
similarly for the other functions shown. Discretizations analogous to those above 
were applied to the other terms in the momentum equations (2.9b), (2.10b, c). In  the 
continuity equations (2.9a), ( 2 . 1 0 ~ )  the discretizations were centred on the points 
(x + &Ax, Yk - &AY), in the form 

for K 2 k 2 1 and all n 2 0. The outer boundary conditions set were 

for n = 0 (cf. (2.11)), and for n 2 1 

cf. (2.12). Other versions tested for the outer boundary conditions produced changes in 
the finite difference solutions well within the accepted limits of accuracy. The wall 
conditions in (2.11), (2.12) were set in the obvious way. Let the discrete versions of 
(2.9)-(2.12) be denoted by dashes. Then, given the whole finite difference solution a t  
the station x, the solution at the next step (x + Ax) was found by iteration from an 
initial guess as follows: (i) First, new guesses for all the f i k ) ,  gLk), hF), pn for 1 < n < M 
were derived by solving the linear equations (2.10’). (ii) Next, the terms newly guessed 
in (i) (or (iii) below) were inserted into the right-hand sides of (2.9’) and the nonlinear 
equations (2.9’a, b )  were solved by Newton iteration to yield new guesses for f J k ) ,  
gLk), po .  (iii) Then the equations (2.10‘) were re-solved for each n in turn, using the latest 
values for fhk) ,  qik), po  and f i k ) ,  gjk) ,  hjk), p j  withj + n in the right-hand sides. The process 
(ii)-(iii) was continued until all successive iterates differed by less than a prescribed 
tolerance q. The same tolerance q WW set on the Newton iteration involved in each 
step (ii). To start off the nonlinear development of the boundary layer an initial 
non-symmetric small kick 

M 

n = - M  
P-, = bneine (2.13) 

(consistent with (2.5)) was given to the pressure field a t  an initial station x = x-, a t  
which the velocities were set equal to the incoming Poiseuille flow values 

(f n = gn = hn = 0 except for fo = Y ) .  

Typical x- and Y-mesh widths employed initially were Ax = 0.1, AY = 0.25. Trial 
calculations revealed however that a massive value of Y, was needed to cope satis- 
factorily with the algebraic decay in ( 2 . 6 ~ ) ~  (2.1 1)-(2.12), while simultaneously a fairly 
fine mesh spacing was necessary near the wall. Accordingly a stretched co-ordinate 
P was introduced, defined by 

Y = aP(1 +SP) / ( I  +2P) 
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FIQURE 2. For legend see facing page. 

and unjform steps A 2  in were taken. Typically the values A 9  = 0.25, 8 =  0.2, 
& = 1, d = 0.02 were chosen, with 401 steps in P, so that the edge value Y, = 673.3 was 
achieved but with the smallest value of A Y  being 0.062 ... (next to the wall). The 
tolerance q was usually lo-', and we took b, = 0 in (2.13) for all In/ $: 1 in most calcu- 
lations. Throughout the solutions the effects of changing Ax, A P, Y, or q were minimal. 
Doubling both the mesh widths Ax, A P, but keeping Y, fixed, altered the solutions for 
P by less than 0.002 %. Similarly, increasing Y, to 1608 but keeping Ax, A P  fixed 
yielded alterations of the order of 10-5 or less in the solutions. The effects of alterations 
in the values of M and b, are commented on in 0 3 below. 
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FIGURE z-z-,) of (a) the axial skin Action 7, ( b )  the 
pressure P ,  (c) the azimuthal skin friction 7*, (d)  the azimuthal slip velocity D, for certain values 

The calculated development with i t  ( 

of 8 (case 1). 

3. Numerical results 
The program of Q 2 was run for a number of different settings of the starting para- 

meters b, in (2.13) ‘and the two solutions presented herein exhibit the properties 
typical of all the runs. First (case 1), we consider the solution developing from the 
initial setting bkl = 0.0005 (b,  = 0 otherwise). Curves for the streamwise skin friction 
7 = (aU/aY)  (2, 0, O), pressure P(z, O), azimuthal skin friction T* = (aW/aY) (z, 0,O) 
and ‘azimuthal slip velocity ’ D(z,  8) are given in figure 2. Good agreement is found 

7 F L M  99 
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n = 2  

FIGURE 

" 
4.6 4.8 5.2 5.6 

x 
3. The calculated variation of the dominant Fourier components pn 

P with Z (=  z--2-,) for case 1 (see (2.8a)).  
(for 1 < n =S 8) of 

between the numerical solutions and the proposed starting form (2.5) for small values 
of 5 E (x-x-,). A numerical difficulty (described also by Sykes 1979) did arise, 
however, in the early trial calculations of the ensuing flow. For if M was set at  a fairly 
low value (e.g. 4) then eventually a severe loss of resolution became apparent in the 
cross-flow ( Y ,  8) plane accompanied by divergence of the scheme. However, if M was 
set higher (e.g.  12) to avoid that problem then the unavoidable errors in the Mth 
Fourier components due to the series truncation always grew so rapidly (in a manner 
(cc em) akin to that of the terms emx cos mtl implied in (2.5)) with increasing x, that 
marked loss of accuracy was again inevitable. The difficulty was overcome to a large 
extent simply by increasing the value of M gradually as x increased. In  that way the 
influence of the higher-order Fourier components was suppressed (as it should be 
physically) until the flow became truly nonlinear and the interactions between the 
various Fourier modes could then yield the physically correct, non-violent, response in 
the higher-order modes. For the results shown in figure 2, for instance, we set M = 6 
for 0 < x - x-, < 4.5, and then increased M by 2 at each of the stations x - x-, = 4.5, 
5.1, 5.7, 6.05 to finish with M = 14. It was found that such a treatment brought very 
good agreement (of the order of 10-O in 7,  P, re, D) with previous, constant M ,  treat- 
ments for x-x-, less than about 5-2 (near separation), beyond which station the 
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5.2 5.4 
- 
X 

5.8 

FIQURE 4. The separation curve [O,(a) versus z-a-,] on which T = 0, calculated for case 1. To 
the right of the curve the axial velocity U is reversed near the wall (see also figure 8). 

constant M treatments soon diverged or lost accuracy, whereas the new treatment 
continued satisfactorily for a good distance beyond separation. The streamwise devel- 
opment (shown in figure 3) of the Fourier components of the pressure in figure 2 gives 
some indication of the above difficulty and its treatment by the variable M approach. 

In  the flow solutions of figure 2 the trend of the starting form (2.5) continues as the 
motion becomes ever more nonlinear, in that along 8 = 0 (the ‘peak line’) 7, -P, 
- aro/a8, - aD/a8 all continue to fall with increasing x, while they continue to rise 
along 8 = 7~ (the ‘trough line’). In  particular, separation (which we define here by 
r = 0) is eventually encountered on the peak line first, thereafter spreading out into the 
flow field to encompass a larger but limited range of values of 8. Figure 4 depicts the 
separation curve r = 0, 8 = 8,(x), dividing the streamwise reversed flow region from 
the streamwise forward flow region. Beyond separation the forward marching numeri- 
cal scheme of Q 2 is open to question, of course, because of the sign reversal of U ,  but our 
solutions nevertheless continued on in an apparently sensible manner. No simple 
economic extension of the Reyhner & Flugge-Lotz ( 1968) approximation technique, 
or of Williams, (1975) decisive treatment for reversed flow, in two-dimensional bound- 
ary-layer problems, seemed feasible in our three-dimensional work, unfortunately, so 
that the downstream range of reversed flow covered by the calculations is not as long as 
might be desirable (see $ 4  below, however). However, manipulation of the variable M 
scheme and reduction in the step size Ax if convergence was not obtained for a given 
step enabled the workings to proceed for an appreciable distance beyond separation. 
Indeed, the downstream integration range covered tended to be limited more by the 
vastness of the computer times required for iterative convergence than by divergence 
or loss of resolution in the numerical scheme. For example, up to 600 iterations per 
step were found necessary in the combined Newton and three-dimensionality iterative 
scheme to satisfy the q = 10-7 tolerance near the end of the calculations. 

7-2 
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FIUURE 6. For legend w e  facing page. 

As the separated flow zone increases downstream, by contrast the flow outside 
becomes increasingly attached to the wall with increasing 2 (see also figure 13 below). 
The growth with x ofr, - aro/aO, - P and - D outside is in fact much more pronounced 
than the fall in those quantities inside the separated flow zone. The physical explana- 
tion of this continuation of the initial trend in (2.5) is similar to that of Smith (19763). 
The pressure rise along the peak line provokes separation and so the boundary layer 
is pushed away (‘upward’) from the wall there; but the lack of displacement then 
turns this upward movement into a sideways (0) one; and the sideways flow therefore 
enhances the effect of the favourable pressure gradient in the 6’ direction produced by 
the pressure rise in the peak line and supports the strong attachment phenomenon 
around the trough line. Beyond separation the adverse axial pressure gradient within 
the separated zone is relatively mild, but enough to maintain the relatively slow 
reversed flow there. 

The second solution presented here, case 2, for which bh, = 0.00005 (b, = 0 other- 
wise) in (2.13), exhibits similar characteristics (figures 5-8). It should be emphasized, 
however, that this different choice for does yield a genuinely different flow solution 
from that of case 1.  This is because of the three-dimensionality of the initial form (2.5) 
and its subsequent nonlinear development. By contrast, in previous two-dimensional 
work (e.g. Stewartson & Williams 1969; Smith & Stewartson 1973a, b; Smith & Duck 
1977) on free interactions, a change in the (single) initial arbitrary pressure constant 
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FIGURE 6. The calculated variation with E = z-z-, of (a) the axial skin friction 7, (a) the 
pressure P ,  (c) the azimuthal skin friction 78, (d )  the azimuthal slip velocity D,  for certain 
values of B (case 2). 

merely causes an origin shift in the otherwise unique free interaction. No such simple 
interpretation holds in the three-dimensional boundary layer, for there are infinitely 
many free interactions possible corresponding to the infinity of choices possible for the 
constants b,  in (2.13). For case 2 figure 5 presents the streamwise variation of 7,  P, 78 ,  

D, while figures 6,7 give the separation curve (0 = 0,,(x)) and a series of velocity profiles 
respectively. Figure 7, in particular, confirms the strong attachment phenomenon 
outside the separation zone and within the separation zone gives an appearance 
increasingly resembling that of a classical vortex sheet (see J. H. B. Smith 1975) as z 
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FIGURE 0. The separation curve for case 2 (see comments for figure 4). 

increases. Finally, in figure 8 are drawn the curves on which U = 0 in crsss-flow planes 
beyond separation. 

In  9 4 we move on to consider the ultimate form of the three-dimensional free inter- 
action solutions. 

4. On the termination of the upstream response and the formation of a 
vortex sheet 

Our task is to describe the typical ultimate behaviour of solutions to (2.2u-c), 
(2.3a, b ) ,  (2.6u, b ) ,  (2.7) downstream. Some hints on the asymptotic structure are 
given by the numerical solutions of 8 3 of course, but the major need in the asymptotic 
structure is for overall self-consistency. Initially, bearing in mind the downstream 
asymptotic work of Stewartson & Williams (1973), Smith (1976a), Smith & Duck 
( 1977) in different two-dimensional flow studies, we postulated an algebraic behaviour 
as E-+W (for fixed 8). However, close inspection of the attached part of the flow field 
led us to the conclusion that such an ultimate form is unlikely there because no sensible 
balance can be struck between the inertial and pressure forces in the momentum 
equations, or between the three components of the continuity equation, in (2.2). 
Instead the axial pressure gradient tends to be suppressed in such an algebraic asymp- 
totic form. With the absence (to leading order) of the axial pressure gradient a satis- 
factory account of the attached part proved impossible to find. The conclusion that 
the attached part of the flow field does not admit of an algebraic description as x+ 00 

can be reinforced by examining the motion near the trough line 8 = n (in similar 
fashion to (4.1)-(4.10) below). 

Again, the possibility (raised by the results in figures 2-10) of an exponential 
behaviour of the free interaction as x-+m also seemed to be ruled out because of 
similar difficulties. In  fact, verification of the failure of the above two forms may be 
derived from the work in 0 4.1 below. 

The above difficulties led us to test, next, the possibility of an algebraically singular 
termination of the free interaction a t  a finite line, x = zJ0) say. This postulate 
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appeared to offer a not inconsistent des'cription of the attached flow part (A) ,  and its 
features are set out below in $4.1. On the other hand no such algebraic singularity 
provided a satisfactory description for the ultimate separated flow zone (B)  near 8 = 0 
and only a certain algebraic behaviour as x+ co, with the pressure tending to a con- 
stant plateau value over the entire separated flow zone, enabled a self-consistent 
account of the latter zone to be made. Consequently we believe that the singular line 
x = xo(f?) cannot extend right across the flowfield, from the trough line to the peak 
line, and that instead it must sweep to downstream infinity (figure 9) at some value of 
8 between 0 and n.. Other possible forms for the behaviour of the singular line can be 
raised of course, but a combination of the evidence from the full calculations of $ 3  
and the analysis near the peak line 0 = 0 ($4.2 below) implies a sweeping downstream 
without reaching the peak line, while physical sense tends to suggest our looking for the 
simplest such sweep. So our analytic discussion of the ultimate behaviour of the three- 
dimensional flow solution will be split into two distinct parts in § 4.1, 4.2 below. 

4.1. The ultimate attached jlow zone (A) 
We propose, then, that the attached part A of the flow field forx+-xo(0) - is defined by 
yo < 0 < n., where xo(8)+oo as B+yo+ (figure 9), and by symmetry 

Introducing X = x 0 ( 8 ) - x  and u = U-zi (8)  W for convenience, so that the con- 
trolling equations (2.2) become 

-Vx+vp+'cyB = 0, ( 4 . 1 ~ )  

-UVX+ vD,+ WDe++;(e) W2 = ( l + x i 2 ) ~ ~ + x i ( e ) p , + u ~ ~ ,  (4.ib) 

- OW, + VWy + WW, = -Pe-xi(B) Px + Wp, ( 4 . 1 ~ )  

(subscripts and primes denoting derivatives where appropriate), we seek the solution 
of (4.1 a-c) [and the appropriate boundary conditions stemming from (2.3a, b) ,  
(2.6a, b ) ,  (2.7)] for 0 < X 4 1. In  fact the only part of A that admits at  all readily of a 
convincing analysis is the neighbourhood of the trough line, 8+n., where W must 
vanish. The vanishing of W a t  8 = n. is achieved via the region wherein (n. - 0)  and X 
are both small and comparable (in order that the axial and azimuthal pressure 
gradients may interact, cf. first paragraph of $4). Setting n. - 8 = 8X, with 8 of O( 1), 
then, we try the singular form 

for X - t  0, where the constant N( =- 0) and function P(3)  are unknown. The flow field 
for B = O(1) then subdivides into an outer inviscid zone A l ,  to satisfy (2.6a, b) ,  and a 
viscous wall layer A2, driven by the slip velocity induced in A 1 and required to satisfy 
the no-slip conditions. 

xo(e)  - x0(m) + o ( ~  - e ) 2  as e+ 7~ - . 

P(S, e) P(8)  X - 2 ~  (4.2) 

In  A l ,  Y is large [Y  = X-"v with 7 of O(i) ]  and 

( V ,  v, W )  = (X-NP(7, B ) ,  X--lQ(q, 8), X-NI?(q, 3))  (4.3) 

to leading order. From (4. l), P , a ,  I?, P satisfy the inviscid nonlinear equations 

(4.4a) 
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FIGURE 7. For legend see faoing page. 
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FIGURE 7. Calculated velocity profiles U ,  W verses Y, at various values of 8, for case 2 at (a) 
Z = 8.2, (b) 3 = 9.0, (c) Z = 9.2, (d )  5 = 9.3, where Z = Z - Z - ~ .  The solid curves give U at 
(from left to right) 8 = 0, in, +n, 3n, &r, Qn, n; the daahed curves give W at (from left to right) 
8 = in, Qn, +n; and the dotted line indicates the asymptote (2.3b) for U as Y --f cw. 
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F. T. 8 n d h  

e 
FIGURE 8. The calculated curves of zero streamwise velocity ( U  = 0) in the cross-flow (Y, 6) 
plane (case Z ) ,  at  the Z( = z - z - ~ )  stations shown. The figure is meant to convey the streamwise 
development of the reversed flow zone, with the dashed arrows indicating the axial flow direc- 
tions. 

and the outer constraints (from ( 2 . 6 ~ ) )  

P N p + O ( ? p ) ,  Q+O(l) ,  27 - O(p-1) &S q-too, (4.4b) 

while as 7 -+ 0 + we expect the tangential flow properties 

P-tPo(B), Q - 0(9), R+ff , (8 )  (4.4c) 

to hold. Here the unknown slip velocities Po(8), A’,@) satisfy the relations 

NP~+ZI.FoP~-BoPA = - 2 N P - B P ’ ,  NPoAo+8i;bR~-~, ,R~ = P’ (4.4d)  

from (4.4~) (at p = 0). End conditions, at 8 = 0 and 8-t 00, are also required and these 
are discussed later. 

In the viscous wall layer, A 2 ,  Y is small, with 6 = YX-i-iN of O( l ) ,  and to leading 
order 

Here from (4.1) F ,  G,  H ,  P satisfy the viscous equations 

( D ,  V ,  W )  = (X-NP(t ,  a), X-i- iNG(t ,  8), X M ~ H ( C ,  8)). (4.5) 

P [ N P  + $ ( N  + 1 )  tir, + B&] -t- Gir, - HPg = - 2N.P - BP’( 8) + ir,t, 
N P + g ( N + l ) t ~ + ~ P ~ + G , - H e  = 0, 

F [ N H + & ( N +  I ) @ + B H ~ ] + G H ~ - H H ~  = P’(B)+Hg,  
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FIGURE 9. (a) The proposed structure of the flowfield downstream, showing the terminal singular 
curve (studied in $4.1), the separation curve (see $4.2) and notation used. (b)  The theoretical, 
attached flow, structure near z = z,,(n) ($4.1). (c) The theoretical, separated flow, structure as 
z + 03 ($4.2). 

with the boundary conditions of no slip at  the wall and, for c 3 co, merging with A 1 ,  

1 F = G = H = O  a t  c = O ,  

F-+Po(3), H+&,(3) as E-+co. 
(4 .6b)  

End conditions are also required in zone A2.  
Complete solutions for zones A1,  A 2  have not been attempted yet. For even the 

local solution near the trough line leads to many complications, as follows. As 3+ 0 
(8-t n - o ( X ) )  we anticipate the behaviour 

(P ,  an, P )  (#(TI, 8(7), W r ) ,  -P+ B2P2) (4.7)  

in A l ,  where the non-zero constants Po, PI are expected to be positive. Substitution 
into (4 .4a ,  b )  then yields the problem 

N($-?/&')+@-&@= 0,  ( 4 . 8 ~ )  

(4 .8b)  

( 4 . 8 ~ )  

N g ( S  - 7 S ' )  + 8$' = 2NP0, 

S [ ( N  + 1 )  9- I?+%?'] + 89' - S2 = 2P2, 
with 

p2 +0(73, 8 + 2 N P 0 - -  2p2 + o(7-3) 
' + N ( 2 N +  1 ) ~  Z N +  2p2 1 7  A?'* ( 2 N +  l ) ~  

as 7+00 (4 .8d )  

for $, 8,* This nonlinear problem can be solved by substituting for 8, from 
(4 .8a ,  b )  into (4 .8c ) ,  to yield a nonlinear ordinary differential equation for $(7) alone, 
and then regarding d$/d7 as a function of $ in that equation. After manipulation and 
introducing thevariables 6 = (2P0)-*$, Q = (c2 - l)-("+l]/4N)d$/d7 and the constant 
K = P2/P0, the associated Legendre equation (see, for example, Hobson 1931), 

(1- [2)Q"-2[Q'+ - l W N 2  - (i(N+ Q = 0, [( 4N2 ) N2(1-[2) 
( 4 . 9 ~ )  

for &([) is obtained with the boundary condition 

@+112NQ-+ 1 as Q+co (4.9b)  

(from ( 4 . 8 d ) ) .  This condition is enough to fix the solution of ( 4 . 9 a )  uniquely for arbi- 
trary positive vaIues of K ,  N provided only that K < $(N + 1)2. However, an additional 
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FIGURE 10. (a) The solid curve gives the calculated variation of the values K = K ~ ( N )  on which 
(4.9a-c) is satisfied, while for comparison purposes the dashed curve gives the boundary 
K = f(N+_1)*2nd the dotted line gives K = N (cf. (4.13)-(4.18)). ( b )  The theoretical velocity 
profiles %, if [according to (4.7)-(4.9)] as functions of 7, for the particular values N = 0.1, 
N = 0.2 along the curve K = K ~ ( N )  of figure lo@). 
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constraint is necessary to ensure the tangential flow condition at the wall, @(O) = 0 
(or, equivalently, that 6 = 1 at q = 0), namely 

(4.94 

The integral condition ( 4 . 9 ~ )  is satisfied only when K is a certain function ( q ( N ) )  of N .  
For example, when N is small the solution of (4.9a-c) is 

for co > 6-  1 exp ( - N-l) ,  and 

= N + N ~ + o ( N ~ ) .  (4.10 b )  

Further, it can be shown analytically that the solution of (4.9a-c) exists for 0 c N c Q 
but does not exist for N =- 4. In  general, however, to find K = K ~ ( N )  satisfying ( 4 . 9 ~ )  
a numerical solution is necessary. This was obtained by using the series (in inverse 
powers of 6 )  satisfying (4.9a, b )  for a given value of N and K ,  calculating the left-hand 
side of ( 4 . 9 ~ )  and iterating with Kuntil(4.9~) was satisfied. The effects of the number of 
terms (up to 800) taken in the series solution and of the number of steps (up to 200) 
employed in the integration in ( 4 . 9 ~ )  were investigated and led to an estimated error 
of + yo in K~ for a given N .  Comparisons were made with analytical results obtainable 
for N = 1, 4, + and N-+O (see (4.10a,b)) and these confirmed the accuracy of the 
numerical method. The curve K = K ~ ( N )  upon which ( 4 . 9 ~ )  are satisfied is drawn in 
figure 10, along with corresponding velocity profiles at two representative points along 
the curve. We note that 

(4 .10~)  

and that K~ > N throughout. 
For a self-consistent account of the motion near the trough line it is vital that we 

demonstrate the existence of a solution for the viscous wall layer A2 on a t  least one 
point of the curve K = K ~ ( N ) .  Since the streamwise and azimuthal pressure gradients 
are favourable, initially one might expect viscous solution to exist for all K = K ~ ( N )  
but in fact the situation is more involved than that, as the analysis below shows. In 
A2 we expect the behaviour 

(P, a, H )  ( 9 ( 5 ) ,  9 ( 5 ) ,  8W5)) as 8-t o+ * (4.11) 

We then set S(c) = (2Po)-t9, T’([) = (2Po)-4[Ep+ &(l - N ) S ] ,  [ = (2Po)a& for con- 
venience, which, from (4.6a, b ) ,  lead to the nonlinear similarity problem 

S “ - T S ’ + N ( 1 - S 2 )  = 0, ( 4 . 1 2 ~ )  

T” - TT”+T“- 2T’S+ @2(1 - N )  (3- N ) +  K +  &N(1 - N )  = 0, (4.12b) 

with T(0) = T’(0) = S(0) = 0, (4.12 c) 

S(co) = 1, T’(a3) = l - [ $ ( N +  1 ) 2 - K ] k  (4.12a) 

Here the minus sign for the square root in (4.12d) (as in (4 .10~) )  follows from the 
behaviour of Q(6)  as {-+ 1 + in (4.9a-c:) and from ( 4 . 4 4 .  We note that S, T‘ tend to 
their asymptotic values in (4.12d) in an algebraic fashion. 
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The problem (4.12a-d) is reminiscent of the simiIarity problems arising in rotating 
fluids (see Rott & Lewellen's 1966 review and the pioneering work of Belcher, Burggraf 
& Stewartson (1972)), but ( 4 . 1 2 ~ 4 )  is of a type apparently not studied previously. 
Our initial attempts a t  finding numerical solutions to (4.12a-d) for values of K ,  N along 
the curve K = K ~ ( N )  proved inconclusive and raised severe doubts about the existence 
of solutions in the required regime. It was decided, therefore, that a broader study of 
the properties of ( 4 . 1 2 ~ 4 )  was necessary, to establish the existence or not of solutions 
along K = K ~ ( N ) .  Further, the relative lack of knowledge of similarity solutions for 
general three-dimensional boundary layers suggests that a detailed examination of the 
similarity problem (4 .12~-d)  is warranted from a more general viewpoint in any case. 
Our approach is as follows. 

First, relatively simple solutions of (4.12u-d) exist for K = 0 provided 0 c N 6 1. 
These are two-dimensional flow solutions in which &( 1 - N )  S = T' and T(g) satisfies 
the Falkner-Skan problem with, in the notation of Jones & Watson (1963), a = - 1 
and /3 > 0. It can be shown further that regular (three-dimensional) perturbations 
from these solutions are possible when K is small. This last property would be useful in 
three-dimensional triple-deck flow studies involving singularities; Stewartson's ( 197 1) 
singularity for two-dimensional flow corresponds to our value N = 1 a t  K = 0. Sec- 
ondly, a Falkner-Skan solution is also obtained for K = N when N 2 1, since then 
S = ZT'/( 1 + N ) .  However, perturbations from the solution at K = N = 1 are possible 
when ( K -  l ) ,  ( N  - 1) are both small only if K lies below the line K = N (see appendix). 
Thirdly, it is readily shown that no solution of ( 4 . 1 2 ~ 4 )  exists at  N = 0 if K > 0, and, 
further, no self-consistent structure for a solution when N + 0 + with K > 0 seems 
forthcoming. Fourthly, numerical solutions were obtained for a number of values of K 

by letting N decrease from 1. The numerical scheme used central differencing and 
Newton iteration, and the effects of the calculation range and step size were tested for 
all the solutions: indeed, such tests were vital in deciding the solution properties, both 
because of the sensitive nature of the algebraic decay as (+a and because of the 
thickening of the wall layer when K,N+O (cf. the splitting of the Falkner-Skan 
solutions fora = - 1, /3 > 0 when /3 -+ 0; see appendix). Sample results, all with K < N ,  
are shown in figure 11 (a ,  b ) .  Their outstanding propertiesare theovershoot in T', which 
occurs and becomes accentuated as N decreases from unity, and the thickening of the 
wall layer with decreasing N .  A plot of the maximum (TLax) of T' against N ,  for given 
K, is given in figure 11 (c ) .  Most importantly, the evidence from figure 11 (c) and the 
fact that solutions could not be obtained for K = N raise the possibility that the 
solution of (4.12a-d) is singular along K = N .  The following analysis (cf. Belcher et al. 
1972) confirms the existence of a singular structure when ( K  - N )  is small, and indeed 
shows that solutions are possible for some values of K > N .  

Suppose K = No + Re, N = No +we ,  where K, m, No are O( 1 )  but 

O c e < l  and O < N , < l .  

The solution of (4 .12~-d)  then subdivides into two zones, 21 and 2 2 .  In  21, where [is 
O(l),  the wall conditions are to be satisfied, whereas the outer conditions (4.12d) are 
unattainable. The solution then adjusts to the conditions (4.12d) in zone 22 ,  where 
[ a I .  Specifically, in 2 1  

S = Sn+eS1+ ..., T = Tn+eT1+ ... (4.13) 
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with TA = Q(3-No)So. Here So+ 1 as c+co, so that the outer condition on T‘ in 
(4.12d) (T’+Q(I +No))  is not satisfied. However, (4.12a,b) now become identical and 
from the leading terms in (4.12a-c) To satisfies the Falkner-Skan problem 

T:-ToTii-  N,(3-N0) [ 1 - ( ) e T i 2 ]  3-No = 0, ( 4 . 1 4 ~ )  

(4.14 b )  

the solution of which exists for 3 > No > 0. The next-order terms then leave the linear 
problem 2(1 - N )  

k”-Tok’+ (3-No; T i k  = I ,  ( 4 . 1 5 ~ )  

k(0)  = 0, k algebraic as c+co, (4.15b,c) 

where (iz -1) k ( [ )  = i ( 3  -No) S, -Ti - + l S o .  The condition ( 4 . 1 5 ~ )  allows the solution 
for k to grow in the form 

k ( c )  N K[@-~N,)/(~-NO) as &a, (4.15d) 

where the constant K has to be determined from the numerical solution to (4.15a-c), 
but the alternative of an exponential growth in k cannot be tolerated. I€ can be shown 
from (4.12a, b )  that (4.15d) implies 

(4.16) 

Therefore the outer adjustment zone 2 2  occurs whencis O(B-7) [y = (3 - N0)/(2 - 2N0)], 
where ST, overtakes To. In  2 2 ,  effectively, T‘ is O( 1)  but S - 1 is o( 1 )  and the properties 
are inviscid. Placing S = 1 in (4.12a, b )  and neglecting viscous terms, therefore, we 
have the nonlinear equation 

- T T ” + T ’ 2 - 2 T ’ - ~ ( N O + l ) ( N O - 3 )  = 0 ( 4 . 1 7 ~ )  

to be satisfied subject to T(0)  = 0, T’(0) = 9 ( 3  -No),  T’(co) = h( 1 +No) ,  from matching 
with 2 1  and from (4.12d). A regular solution exists only if T’ c 9(3-No) [otherwise 
T‘ + co as %-+ 001 and it is given implicitly by 

T = C[9(3 - No) - T’](~--NO)/(~-WO) [T’ - $( 1 +No) ] ( - ~ - N O ) / @ - - O ) ,  with T(0)  = 0, 

(4.17b) 

where the constant C is unknown but must be positive. We note that, since No c 1, 
the conditions T’ = 9(3 -No) and T‘ = $(I  +No) are attainable only for E - t O  and 
E + 00 respectively (g = e y e ) ,  which is basically the reason for the existence of zone 22.  
The merging of 2 2  (as g+ 0) with 2 1  (as c+ 00) is achieved provided 

(4.18) 

from (4.13), (4.16), (4.17b). Hence the right-hand side of (4.18) must be positive, and 
so iz 5 N is permissible depending on whether K 5 0. The numerical solution of 
(4.15u-c), to  determine the value of K as No varies, is summarized in figures 12 (a, b )  
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FIQURE 11. For legend see facing page. 

(see also appendix). It is found that K < 0 if No > Ncrit( = 0*1218),t K > 0 if No < Ncrit 
and K cc (No - NCrit)-' near No = Ncrit. Hence the suggestion is that if N > Ncrit solu- 
tions of (4.12a-d) exist immediately to the right of the line K = N (  = No) but not at, or 
to the left of, K = N .  A comparison (figure 11 a) with the full solution of (4.12134 for 
K = 0.25, N = 0.251 tends to support the singular description proposed in (4.13-18) 
for K+ N - . More significantly for the present work, solutions of (4.12a-d) also exist 
immediately to the left of the line K = N (  = No) if N < Ncrit. Hence an advance of the 
viscous solutions towards the line K = K'(N) of figure 10 is possible if N < Ncrit. 
Finally, to verify firmly that the region of existence of solutions to (4.12~-d) does 

t N,,, is in fact identical with the value no = 0.1217 of Belcher et al. (1972), allowing for 
numerical error. The reason is that, as No + Ncr,,, lkl + co (see figure 12b) and so effectively k 
satisfies (4.15a-c) but with the constant (1) in ( 4 . 1 5 ~ ~ )  absent. Hence Belcher et aL's (1972, 
equation (6.5)) problem is retrieved but with their leading eigenvalue h having to be zero, which 
occurs a t  No = no. 
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FIUURE 1 1. Sample numerical solutions of the similarity problem (4.12 a d ) .  -, 2” ; - - -, S for 
various values of N .  The arrows indicate values of T’(co). In (a) K = 0.25, in ( b )  K = 0.444, and 
(c) shows TL,, versus N for those two values of K.  The results are new similarity solutions of the 
three-dimensional boundary-layer equations. The crosses shown in (a)  (for T‘ when N = 0.251) 
and in (c) (for K = 0.25, 0.444) follow from the limiting analyses in (4.13)-(4.15), and figure 12 
below, near the line K = N .  

intersect the line K = K ~ ( N )  as required, we note (from the appendix) that, when 
N - t  0 + , a perturbation analysis like that of (4.13)-(4.18) can be used to establish the 
existence of solutions of (4.12a-d) just to the left of the line K = Nprovided only that 
N & K - N > 0. Hence the curve K = K ~ ( N )  in (4.10 b )  lies within this region of existence 
near N = 0. Accordingly, viscous solutions exist along K = K,(N) for a range of values 
0 < N < NmaX but not for N > N,,,. 

No attempts have been made to determine the value of N,,, or to solve for the entire 
zones A l ,  A2. Indeed it may be that solutions of a more multistructured kind (cf. 
Belcher et al. 1972) than Al-A2 exist everywhere along the curve K = K,(N). Also, 
order-of-magnitude arguments suggest the presence of further local zones outside 
A l ,  A2, with n-0 of O(X4). Further comparisons between the proposed singular 
structure (4.7)-(4.12) for X+ 0 + and the full three-dimensional boundary-layer 
solutions of $0 2-3, near the trough line, strongly favour the emergence of the singu- 
larity, as 9 4.3 below shows. 

4.2. The ultimate separated-$ow zone (B)  and vortex sheet 

As was stated a t  the start of Q 4, we have suggested that the singular line of $4.1 sweeps 
to downstream infinity as @+yo+ (figure 9). In principle the fluid which does not 
intersect the singular line (see Q 5 below for physical interpretation) can flow past that 
line, on the side x < zo(e), and in particular that flow can continue indefinitely beyond 
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FIGURE 12. (a) The calculated solutions of (4.15a-c) for k versus at the various values 
shown. ( b )  The calculated variation with No of the inverse of k at a typical value (20) 
shown to illustrate the arguments in (4.154-(4.18). 
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the foremost singular point x = xo(n). The boundary condition (2 .7 )  a t  8 = n is then no 
longer applicable, of course, and must be replaced by one a t  the unknown position 
x = xo(0) - of the singular line, so that some arbitrariness will remain in the following 
solution for that flow; but the analysis below is concentrated eventually on small 
values of 8 and so is virtually unaffected in character by any change in the boundary 
conditions from 8 = 7r to x = ~ ~ ( 8 ) .  In  principle again? part of that flow could remain 
separated, in the zone 3, as we shall show in this subsection. Zone B is the range 
0 < 8 < a,, to leading order, where 0, < yo (figure 9 ) .  Let us try for a description of the 
terminal solution in zone B.  First, the algebraically singular form of 0 4.1 seems out of the 
question here. For if it did hold then the inviscid equations ( 4 . 4 ~ )  presumably follow 
and then, a t  19 = 0, l? would have to vanish in a manner similar to that of (4 .7 )  with 
OX-1 replacing 8. But that leads to an axial momentum equation of the type (4 .8b )  
and a contradiction is reached. The contradiction is that P ( 0 )  must be positive to 
preserve the separated flow structure and yet, a t  the necessary vortex sheet (given by 
r ]  = qO(O) at 8 = 0, say), (g - N$qo) must vanish to satisfy the conventional inviscid 
conditions a t  the sheet. So, a t  r] = q O ( O ) ,  the left- and right-hand sides of (4 .8b)  have 
opposite signs. The same contradiction holds a t  the wall r] = 0 when O = 0. 

We revert, therefore, to an algebraic form in the separated flow zone B and, after 
some trials, we conclude that a self-consistent account is achievable only if the pressure 
is asymptotically equal to a positive constant (Pm, say) throughout zone B. Specifically 
we propose that, as x + 00, 

P N P, + o(X-1) (4 .19a)  

(see also (4 .22b)  below) in B and zone B subdivides into two inviscid regions B1, B 3  
and two viscous layers B2, B 4 .  Here the layer B 2  is a vortex sheet lying between the 
outer inviscid region B1 and the inner one B 3 ,  while the layer B 4  is a reversed sub- 
boundary layer lying between B 3  and the wall, as shown in figure 9 .  The proposition 
( 4 . 1 9 a )  immediately implies the properties 

c 

D+D,(B), C" - d I L ( 8 ) ,  E+DL(B) as X+OO (4.19 b )  

from ( 2 . 6 b )  and from integration with respect to x from -00 to 00. Here D,(O) is an 
unknown function of 8, dependent upon the entire flow solution from integration of 
(2 .6b ) .  Then (4.19u, b )  suggest the structure B l - B 4  below. 

In  B1, of thickness O(z*), f = Y/x* is O(1)  and 

( U ,  v, W )  N (x@(O, f ) ,  B(8, f ) ,  x-@(8, 7)). (4 .20)  

t Following a referee's valuable comments the author wishes to stress the tentative nature of 
$ 4.2. For there is certainly some doubt about the application of this subsection's analysis beyond 
the foremost singular point 2 = q,(n) of $4.1, because of the change in boundary conditions 
necessary then: see also $5 .  On the other hand the author believes the work in $4.2 to be of 
importance, both in showing that an understanding of the separation and formation of a genuinely 
three-dimensional (non-quasi-two-dimensional) vortex sheet from a viscous three-dimensional 
interaction process is possible, and in providing some further checks on the calculations presented 
in $2-3, since it appears (see checks in $4.3 below) that the relatively short distance between the 
foremost separation and singular points is still enough for the predicted trends of $ 4.2 to emerge 
satisfactorily in a numerical sense. Despite doubts about the application of $4.2 to the flow past 
a relatively large three-dimensional obstruction it is felt that inclusion of $4.2 is justified, 
therefore. 
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Here, from (2.2a-c), F,  G, H satisfy the inviscid equations 
- -  

and the boundary conditions, for 5-t 00, 

( 4 . 2 1 ~ )  

(4.21 b )  

from ( 2 . 6 ~ ) .  The conditions (4.21 b )  are sufficient to fix the solution in Bl (see (4.23)- 
(4.29) below) but not the position of the vortex sheet B 2  which forms the lower bound- 
ary of B I .  At  B2, centred on ?j = Tjo(0), say (i.e. Y = x4?jO(O)), the flow in B1 must 
certainly satisfy the stream surface condition (J. H. B. Smith 1975, 1977) 

B = ~?ri,P+fldi?,/dB. 

But this condition, substituted into (4.21a), leads to the result that F = = I7 = 0 
at 7j = ?jo(8), after integration and applying (2.7) a t  8 = 0. Further inspection (see also 
(4.23)-(4.29) below) leads to the conclusion that 

F = 0[(?j-?j0(t9)+~, R = O[(v-qO(e))+-j, B *vo(e)P+&dv,/ae (4.2ic) 

as v+ vo(t9) + is the constraint fixing the position ?j = ?jo(0) of the vortex sheet B2. 
Within the sheet B 2  (4.21 c) assures consistency to leading order and implies that, 

for viscous forces to be effective, B 2  has thickness O(x+).  The sheet acts to reduce the 
velocities from their forms (4.21 c) at the upper edge of the sheet to much smaller-sized 
values a t  the lower edge. Then, in B3, between the sheet and the wall, P,  8, fl are 
identically zero and, instead, the motion there is driven by the need for entrainment 
into the lower edge of B2. The entrainment is due to the (unknown) positive velocity 
V = ic^(S) x-$ holding at ?j = ifo(0) - and implies that in B 3  (where 0 c 5 c To(@) 

(u, v, w) = (.#(?j, e), x-+d(?j, el, ~ * E ( v , e ) ) .  (4.22 a)  

It is also necessary for consistency that the azimuthal pressure gradient and inertial 
forces should balance in B3. Hence 

P P, - x+.F(e) (4.22 b )  
= = - -  

and, from (4.22a, b )  and (2.2a-c), F ,  G,B,H satisfy the inviscid equations 

( 4 . 2 2 ~ )  
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The boundary conditions in B 3  impose tangential flow as the wall is approached and 
matching with B 2  at 7 = vo(0) - , in the form 

- - 
B+o as 7 + 0 + ,  S-+C(O) as 7+7,(O)-. (4 .22d)  

Lastly, region B 4  is required to reduce the slip velocities F(0, O), E(0,O) resulting from 
( 4 . 2 2 ~ - d )  to zero at the wall. 

End conditions are again required, a t  O = 0 and 8 = O,, for all regions B l - B 4 .  
While complete solutions for B1-B4 for 0 < O c 0, have not been attempted, 

nevertheless some encouraging features do emerge from a study of the properties of 
B1-B4 near the peak line 8 = 0. There we expect that, for O + O  in B1, 

Dm(0) N OD, + 03D3 (4.23 b )  

because of ( 2 . 7 ) ;  here the unknown constants D, and D, are expected to be positive 
and negative respectively. From (4.21 a, b ) ,  therefore, f,g,g must satisfy the problem 

As in $4.1 the nonlihear inviscid problem can be solved in an implicit form. The 
equations in ( 4 . 2 4 ~ )  are manipulated to yield an ordinary differential equation for 
f(7) above. Then, in the latter equation, d f / d 7  is treated as a function off. Integration 
and application of (4 .24b)  then yields the (implicit) solution 

f- ~t tan-1 (DL*~) = 7- ( 4 . 2 5 ~ )  

forf(7) (with -in < tan-1 < in). It follows that, from (4 .21c) ,  

70(0) = *not (4 .25b)  

determines the vortex sheet position at 0 = 0, and that 

f [301(7 - 70(0))1' 8s 7-t * (4.25 c )  

Similar behaviour as ?j-+ VO(O) + occurs in g, E since, from (4 .24a) ,  (4 .25a) ,  

(4 .25d)  
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Hence the occurrence of the one-third powers of (5  - T j o )  referred to just below (4.21 c) is 
demonstrated. However, to reinforce the demonstration an examination of the next- 
order terms in (4.23u, b) is necessary and also proves fruitful in regard to the com- 
parisons in $4.3 below. From (4.21u, b) the problem 

(4.26 b) f 1 ~ ~ )  h , - -  D3, g , -+3~ ,  as T+m 

governsf,, &, El. After manipulating ( 4 . 2 6 ~ )  to derive an equation forfl alone involving 
f, 9, z, 5, we treat f, as a function off and, using ( 4 . 2 5 ~ )  d), we obtain the ordinary 
differential equation 

-303 - - 
5 

1 
(3D1f4+ 30D;f2+ 35Df)f1 = 0 ( 4 . 2 7 ~ )  

6(D1 +f2)3 
+ 

forfl(f). One solution of ( 4 . 2 7 ~ )  is readily found to bef, = (f2+ D,)f-2 and on substi- 
tuting f, = ( p  + 01)f-2x we arrive at an associated Legendre equation for dX/df. Its 
solution satisfying (4.263) is 

- dX = A,( 1 - (2)4 (33E5 - 30c3 + 5c), (4.27 b) 

where t(2f: + 1) = 1,f = Dtf, and A, is an unknown constant. Hence the solution for 
,fl satisfyihg (4.26b) is 

dfc 

1 - - F)  (1 - fl$ (3362 - 306f + 56T*) dc1. (4.27 c) 

Here A, = 60,/5Df. The solutions for zl,gl then follow from ( 4 . 2 6 ~ ) .  In particular 
(4 .27~)  shows that as 7-+ ?,,(O) + 

fl Ad7- 50(0))-%, (4.27d) 

where A, = 1.721AC D,/(3D1)Q. At first sight (4.27d) seems to contradict the one-third 
power law proposed just below (4.21 c), but further inspection establishes that (4.27d) 
merely acts as a displacement of the leading-order term's behaviour (4 .25~) .  For, in the 
implied new layer defined by 5- ?jo(0) = 0(62) ,  wherein the terms 691 andfof ( 4 . 2 3 ~ )  
become comparable (according to (4.25c), (4.27d)), the solution for P is simply a dis- 
placement of (4.25c), to leading order: 

- (p+D1 A 

(4.28) 
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Hence ( 4 . 2 1 ~ )  implies that, for 8 4 1, the vortex sheet position is described by 

qo(8) N SnD! + 2.064D,Di482 + O(8‘) (4.29) 

and (4.28) confirms the one-third power law at  the vortex sheet. Since D, < 0 (4.29) 
yields a physically sensible shape for the vortex sheet locally near the peak 1 ine. 

Further terms in (4.23a) may be obtained in principle, and similar local analyses 
near the peak line may be made for regions B2-B4. In  B3, for instance, under the 
assumption that 

(F ,  8, k) N (Fo, Go, Go) as e-+ o + (4.30) 

in (4.22c), the equations for F o , ~ o , ~ o  may be maniplated into one - equation for 
(dFo/dq) as a function of P.  Then the substitutions dFo/dq = zt$(z) ,  F0z = - 1, lead 
to Bessel’s equation for $(z ) .  The relevant solution for $(z)  is proportional to K v ( z ) ,  
the Sc-order Bessel function of imaginary argument, and integration with respect to 
Fo yields F0(q) .  The required boundary conditions Bo(0) = (0) ,  Go(qO(O))== ~ ( 0 )  (from 
(4.22d)) are readily satisfied and the reversed flow property, that Fo(Tj) < 0 for 
0 < 5 < TO(O), is obtained. 

4.3. Comparisons with the full solutions 

First, an alternative presentation of the full three-dimensional solutions of $ 3  for 
7, r0, P (case 1 )  is given in figure 13 to underline the progress with respect to x of the 
8 variation of the flowfield. The singular, and strongly attached, nature of the flow near 
the trough line according to $ 4.1 then seems to be in keeping with the full solutions of 
figure 13, &s does the less dramatic behaviour proposed in $4.2 near the peak line. In 
particular, with the estimated values N = 0-17, K = 0.194, Po = 2.22, zo(n) = 6.4 
suggested for case I (see also figures 10 and 14), the asymptotes of ( 4 4 ,  (4.7) which are 
also shown in figure 13 produce fairly good agreement with the full solution near the 
trough line, at the last two z stations shown. Next, a plot (against x)  of the values of 
PIP’, r/7‘ (prime = d/dx) and P along the trough line (case 1, figure 2), given in figure 
14, also lends some support to the proposed existence of a singularity a t  a finite value 
(xo(n)) of z, with the above values of N ,  K ,  zo(n), Po; note, incidentally, that far up- 
stream the asymptotes PIP‘-+ 1,7/7’+ 03 (exponentially) of (2.5) are reproduced in 
figure 14. The very fact that, in contrast with figure 14, an exponential or algebraic 
behaviour of P as z+ 03 along the trough line would yield PIP’ tending to a constant 
or to infinity, respectively, downstream also adds weight to the belief in a singular form 
((4.2), which for PIP’ islinear as x-+xo(n) - ). Further agreement in aqualitative sense 
is derived by comparing the velocity profiles U ,  W near the trough line according to 
$4.1 (figure 10) with the full solutions of figure 7. 

Finally, comparisons between $ 4.2 and the results of $ 3  along and near the peak 
line are drawn in figure 15. Figure 15 (a) presents comparisons of the velocity profiles 
from case 2 (figure 7) with those of $4.2, where x is measured from the separakion point 
and the representative value D, = 2 is taken; the agreement is not discouraging, 
especially in view of the limited downstream range covered numerically in $0 2-3. We 
note also that in figure 2 the pressure gradient along the peak line reaches a maximum 
just before the end of the integration there, so that an approach to ( 4 . 1 9 ~ )  far down- 
stream is not inconsistent. Figure 15(b) gives comparisons of the curves on which 
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FIQURE 13. The calculated variation with 0 of the axial skin friction 7,  the pressure P ,  the azi- 
muthal skin friction 76, at various values of 5 (=  x-x-,), for eaae i of $3. -, P ;  ---, 7 6 ;  
_ _ _ _ _ _  , 7. The crosses indicate the predictions of $4.1 (see (4.2), (4.7)) for P at 1: = 6.0, 6.1. 

U = 0 from $ 3  (figure 8) with the vortex sheet curve of $4.2 (see (4.29)). We remark 
that D,  in (4.29) is replaced by 8D (x, O ) / H  in figure 15 (b ) ,  since these two values are 
equivalent as x+oo anyway (according to (4.23b)) while the replacement seems to 
compensate for the limited extent of the downstream integrabion range, and improved 
agreement is thereby obtained. In  fact, with the estimated value D, = - 0.5 suggested 
by the variation of D(x,  8) in figure 5 ( b ) ,  the development of the numerical solutions of 
$$ 2-3 is remarkably close (figure 15b) to the asymptotic prediction (4.29) even for such 
small values of x. 

5. Implications and further discussion 
By no means, of course, can it be claimed yet that a full account (for all values of 0) 

of the terminal structure of the upstream flow response (free interaction) studied 
numerically in $$2-3 has been advanced. Indeed, the mechanism of the terminal 
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4 5 6 
X 

FIGURE 14. Comparison,along 0 = T ,  of the full numerical solutions (for case 1)  for P,P /P ' ,  717' 

(from $3) with the local terminal predictions (from $4.1). The former are shown by solid curves, 
the latter by, respectively, crossed, dashed and open-circle curves. Also, note that PIP' + 1 up- 
stream, in line with the starting form (2.6). 

singularity near the trough line ($ 4.1) alone is such a delicate matter that any hope of a 
full account, for all values of 8, seems very remote. Nevertheless, it  is felt that the 
comparisons in $ 4.3, between the proposed terminal forms and the full solutions near 
the trough and peak lines, do add considerable weight to the arguments of $$4.1,4.2; 
further, the very existence of a singularity arising in the upstream flow response is 
enough in itself to enable some important inferences to be drawn (see below) in the 
context of flow past three-dimensional obstacles which are steeper than the three- 
dimensional boundary layer examined in this paper. So, despite the undeniably large 
amount of work that would be required to verify a full account for all values of 8 and 
the analytical difficulties inherent in treating three-dimensional boundary-layer flows, 
we believe that the analyses in $ 4  do provide a consistent starting point for such a 
complete description, if necessary, of the terminal structure of the upstream free 
interaction. We believe further that a singular termination of the increasingly attached 
part of the flowfield, as in $ 4.1, is inevitable for any nontrivial upstream response, no 
matter how the upstream response starts in (2.5). Certainly all the starting forms tested 
numerically by the author led to strong attachment phenomena akin to those des- 
cribed in $ 3. To provide support for any asymptotic proposals describing the complete 
terminal structure (figure 9), however, presumably the considerabie taskof numerically 
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4 

I= 3 

2 

FIGURE 15. (a )  Comparison between theory ($4.2) and calculations ($3) of velocity profiles, in the 
form 2-1 U versus x-i Y, around the separated flow region. The solid curves are the full numerical 
solutions from $ 3 ;  the dashed curve is the predicted asymptote from (4.25a). ( b )  Comparison 
between theory ($4.2) and calculations ($3) of the curves of zero streamwise velocity ( U  = 0) in 
the cross-flow (Y,O) plane, for the various values of P = x- 2-, shown; the solid curves are as 
in (a),  while the dashed curve gives the prediction (4.29). 
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continuing the free interaction of $9 2-3 beyond the foremost singular point (z = zo(n)), 
towards the whole singular curve z = zo(8) (n 2 8 > yo), would have to be faced. The 
question of matching the attached part of the flowfield ($4.1) to the separated part 
($ 4.2) would also represent a considerable analytic and numerical challenge. 

Before discussing the broader implications of the free interaction studied in this 
paper, we wish to draw attention to a number of points of further interest. It is worth 
while emphasizing first the genuinely three-dimensional nature of the entire free inter- 
action above. If the flow remained two-dimensional there would be no upstream res- 
ponse at all, because of the zero displacement condition (2.3c), as the starting forms 
(2.5) show. The terminal forms of $94.1, 4.2 likewise reflect the necessity of three- 
dimensionality in the motion, without which the solutions of $ 4  could not exist. By 
contrast, if the displacement is nonzero, as in the three-dimensional triple-deck prob- 
lems of Smith et al. (1977) and Professor 0. R. Burggraf & Dr P. W. Duck (1978-9, 
private communications) (see also the comments on pipe flows below), then the terminal 
forms of the free interaction in both the attached and separated parts of the flowfield 
can still be two-dimensional phenomena even when the flow upstream develops in a 
three-dimensional fashion. This would suggest further that three-dimensional free 
interactions with nonzero displacement may yield singular similarity solutions 
throughout a wide range of the K ,  N plane of figure 10, if a line of symmetry (corres- 
ponding to our line 8 = n) is present. In  fact, with zero or nonzero displacement, it  is 
possible that a three-dimensiond free interaction may lead to a wide range of line- or 
point-singularities apart from the new similarity forms studied in $ 4.1. Since the three- 
dimensional boundary-layer equations are involved many of the nonlinear phenomena 
of rotating fluids, for example, are accessible in principle as local terminal forms, 
including the subtleties of the Belcher et al. (1972) ladder structure as well as the 
simpler forms of Rott & Lewellen (1966) and Greenspan (1968). Again, the emergence 
of a vortex sheet downstream in the separated flow of $ 4.2 raises the possibility of such 
complex phenomena as vortex spirals, associated with the flow past moderately sized 
obstacles, developing as an asymptotic part of a three-dimensional free interaction. 
Whether or not such singularities or vortex formations can arise in three-dimensional 
free interaction studies remains the subject of further research. 

We consider finally the direct implications of the upstream flow response studied in 
$0 2-4 for three-dimensional pipe flows and external flows. In  both cases the occurrence 
of the singularity ($4.1) in the strongly attached motion is of paramount importance, of 
course. First, for pipe flows, if a particular bounded obstacle defined by 

r = 1 - hR-.Qf(z, 8) 

[ Y = hf(x, 0) in I with f(z, B),  an O(1) function of z, 8, being zero outside a 
bounded domain of the z,8 plane] were present a t  the pipe wall, then for h of O( 1) the 
motion upstream of the obstacle would be described by only part of the free interaction 
of $0 2-3. As h increases, however, presumably the upstream response must increase 
and when h B 1 (but h g Rq for all q > 0, to retain the flow structure of $2) the flow 
variables immediately upstream of the onset of the obstacle must be asymptotically 
large in order to accommodate the asymptotically large change in boundary conditions 
at the obstacle. Hence when h 1 the obstacle must start in the neighbourhood of, and 
just upstream of, the foremost singular point x = xo(n). As h increases, therefore, the 
upstream response cannot be pushed infinitely far upstream: it remains confined to 
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O( 1) distances ahead of the obstacle and, as h+ 00, the flow variables (U, V ,  W ,  P) 
remain O( 1) at such distances upstream. The unbounded increase necessary in the flow 
variables is concentrated immediately ahead of the obstacle (i.e. for x&n) -x < 1)  and 
thereafter, not upstream, These properties are similar to the singularity properties of 
certain two-dimensional free interaction flows (Stewartson 1971; Smith 19773) [de- 
spite the fact that here the separated flow region ($4.2) could in principle continue to 
infinity downstream] and they lead to an explanation of the flow features for obstacles 
which are steeper than those (of slope R-4) above. For the effect of the concentration of 
relatively large pressures, in particular, around the obstacle and beyond as h increases 
becomes spread out in the inviscid core flow I1 of 5 2 and, most significantly, the core 
flow response ahead of the obstacle increases indefinitely (in contrast with the upstream 
response of the boundary layer I above) as h increases indefinitely. Eventually, 
therefore, the core flow perturbation response, originally of order R-8 in (2.4a), will 
grow to become comparable to the boundary-layer response and the slip velocity 
associated with the core flow perturbation will interact with the original Poiseuille flow 
near the wall. Hence we envisage that, as the obstacle increases in severity, the next 
stage of upstream (and overall) flow response, different from that of $$ 2-4 (and Sykes 
1979), will arise when the core flow displacement produced by the obstacle itself is 
sufficient to introduce a nonzero displacement effect at the edge of the boundary 
layer I instead of the zero displacement of (2 .34 .  Furthermore, the boundary layer will 
then still be confined to. O( 1) distances ahead of the obstacle. 

A similar, although less clear, interpretation is readily available for external flows, 
granted the limitations set by the periodicity condition used here (see $ 1 ) .  Bearing in 
mind that, for external flows, the obstacle for which $5 2-4 describes the upstream flow 
response is small compared with the triple-deck size (Smith et al. 1977), we may infer 
that as the obstacle increases in severity the next stage of upstream response distinct 
from that of $$2-4 will occur when the obstacle is sufficiently large to produce a non- 
linear response of the triple-deck interaction kind or equivalent, with the displacement 
then being nonzero. Both in three-dimensional pipe flows and external flows, therefore, 
the advance from the present zero-displacement structure to the (unknown) structure 
of the flow upstream of a truly severe obstruction, of dimensions of order one, appears 
to be via a structure involving a nonzero displacement, of the triple-deck (Stewartson 
1974; Smith et al. 1977) or of the core-feedback (Smith 1978b) type. 
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Appendix. The solutions of (4.12~-d) and (4.15~-c) near N = K = 0 and 
N = / C = l  

Local analyses of (4 .12ad) ,  (4.15a-c) near N = K = 0, 1 are required for (inter alia) 
the purpose of checking on the numerical work and conclusions of $4.1.  Consider first 
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Pf1 - PP" + fl( 1 - P ' 2 )  = 0, 

the solution of (4.15a-c) when No+ O +  . The Falkner-Skan problem (4.14a, b )  for To, 
which we transform to 

(A 1)  

P(0) = P ( 0 )  = 0, P'(co) = 1, (A 2) 

to match the notation of Jones & Watson (1963) (here 

To = [4(3 - N,)l@(&, c = CH3 - N,)l-45", #? = 2N0/(3 --NO)), 
then splits into two sublayers F1, F 2  of thickness O(B-i),  O(/3-ie11B) respectively 
(#? < 1). In  F1, = #?&8..+ ... with f = P-fE, and so from (A 1) 

P{-P1P;+l = 0. (A 3) 

The boundary conditions on (A 3) are P,(O) = Pi(0) = 0 (from (A 2)) but the outer 
constraint in (A 2) is unattainable in Fl. Instead we impose 

T, - t1(2 In f,)) as t1 + co. (A 4) 

(A 5 )  

Then in the outer layer F2,  where = @-*eS2/8, P = EPz+ ... and from (A 1)  

- P 2 P ;  +l-P't = 0. 

Here the solution must satisfy the outer constraint in (A 2), i.e. Pz-+ 1 as E 2 + a ,  and 
match with (A 4) as Ez+ 0. The solution of (A 5 )  is therefore 

P2 = (1 - e-ga)i. (A 6) 

Similarly, the problem (4.15a-c) for k ( g )  must also split into two as No, /3+ 0, where k 
now satisfies 

d2k dk 

dg2 d [  
- -P-+$( l -#?)k!P'  = #2+#?). 

In  Fl, k = #?-&El + . . . , implying that from (A 7) 

k i -P lk i+gk lP i  = 3 (A 8) 

and k,(O) = 0, &+k, logarithmic as [,+oo, (A 9) 

from (4.15b) and analysing (A 8) for El 1.  Once (A 8), (A 9) are solved the develop- 
ment through sublayer F 2  to the condition ( 4 . 1 5 ~ )  may be ensured as in (A 5 ) ,  (A 6) for 
P. The solutions of (A 3), (A 4) for p, and (A S ) ,  (A 9) for k, have been found numeri- 
cally, are shown in figure 16, and have the properties c(0) = 1.436, ki(0)  = 5.025. 
The implied asymptote P"(0) - 1.436,@ for p+O+ agrees satisfactorily with the 
Falkner-Skan solutions of (A l ) ,  (A 2) when B is small, while the implied asymptote 

dk(0 )  - 6.80lN,-* for & + O +  z 
agrees satisfactorily with the full solutions of (4.15a-c) for small No, as figure 17 shows. 
Further, the solutions confirm that the property K > 0 (see figure 12a, b)  persists as 

Second, the problem (4 .15~-c)  is also analysable when No+ 1. Suppose No = 1-8  
(where 6 < 1). Then, to leading order, T,  satisfies T: - T, T," + 1 - TA2 = 0 with (4.14b), 

NO+O+. 
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FIQURE 16. The numerical solutions of (A 3), (A 4) and (A 8), (A 9) for pi and k, ver8w El. 
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FIGURE 17. The numerical solutions for dk(O)/d< as a function of No from (4 .15~~-c)  (solid curves), 
compared with the limits (A 10) near No = 0 (dashed curve) and (A 14) near N = 1 (dotted 
line). 
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the solution of which is obtainable analytically after a double integration (Jones & 
Watson 1963), while k satisfies k"-Tok' = 1 when [is O(1). Hence 

and k - -In( as E-tco. Again, therefore, an outer adjustment layer is called for to 
satisfy (4.15c, d), and this occurs where = exp ( t 3 / S )  with t3 of O( 1). There 

k = S - l k 3 +  ..., T o = c +  ... andso - k i + k 3 =  1. 

The merging (as &-to) with (A 11)  (as g-+co) and the outer constraint ( 4 . 1 5 ~ )  or 
(4.15d) are satisfied by the solution 

k3 = l-da 
since (A 12) yields 

k - - 8 3 ?  for %-+ co 
inlinewith (4.15d).ItfollowsthatK - -(l-No)-lisnegativeasN,-+ 1 - ,  confirming 
further the conclusions of $4.1 concerning K .  Also, (A 11) yields the asymptote 

dk 
-(0)+-1.4 as N o + l - ,  
45 

which agrees satisfactorily with the numerical solutions of ( 4 . 1 5 ~ 4 )  (figure 17). 
Third, we may use and extend the work of (A 1)-(A 9) to examine the solutions of the 

full problem (4.12~-d) near N = K = 0 ( = p). In  particular, one important suggestion 
from (A 3), (A 8) is that, since in F1 TA N PS whereas the O(E)  perturbations Ti ,  S, 
(of (4.13)) - B-4, the expansion of (4.13) will remain valid in principle as &,-to+ 
provided E Q No. Assuming that, as N 3 0, K N N + E when E Q N ,  we may then split 
the solution of (4.12a-d) into two layers Fl, F2. However, the ensuing analysis essen- 
tially reproduces that of (4.13)-(4.18) and (A 1)-(A lo), and so it is readily found that 
the suggestion above is justified. Hence solutions exist in particular along the line 
K = K,(N) of figure lO(u) for N < 1, since K, N N + N 2  there from (4.10b). Fourth, and 
similarly, the work of (A 11)-(A 14) may be extended to allow examination of the 
solutions of (4.12~-d) near N = K = 1.  Once again, however, the resultant analysis 
follows much the same pattern as above, i.e. (A 11)-(A 14). The details need not be 
pursued here, but they do confirm that solutions of (4.12~-d) exist only to the right of 
the line K = N as N - t  1 -, in keeping with $4.1. 
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